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ABSTRACT 
Combat vehicles have unmet needs for auxiliary power units (APUs) that reduce fuel 

consumption and offer improved operational effectiveness and soldier safety. Adoption of fuel cell 
APU technology is hindered by requirements for fuel desulfurization and reforming. Both solid-
oxide and polymer-electrolyte-membrane fuel cells are poisoned by sulfur compounds in jet fuels. 
To more efficiently manage desulfurization processes, improved in-line methods of determining 
the sulfur content of fuel are required. Mainstream Engineering is developing a compact, in-line 
analyzer for measuring total sulfur in jet fuel for fuel cell applications. This analyzer enables less 
frequent desulfurizer regeneration events when compared to scheduling regenerations based on 
the assumed worst-case sulfur limit. The measurement technique uses multivariate analysis of 
Raman intensity spectra, which offers calibration robustness, contaminant detection, and 
identification of fuel type. 

 
INTRODUCTION 

Fuel cell auxiliary power units (APUs) would significantly 
reduce military fuel consumption and lead to improved 
operational effectiveness and solider safety. We estimated 
that a fuel cell APU could result in up to a 90% reduction in 
fuel consumption during idling for large combat vehicles [1, 
2]. Considering the high fully burdened cost of delivered 
fuel (ca. $15/gal), the potential savings in fuel expenditures 
is substantial [3].  

Both solid oxide fuel cells (SOFCs) and high-temperature 
polymer electrolyte membrane (PEM) fuel cells are poisoned 
by sulfur compounds. Current desulfurizers are regenerable, 
but the desulfurizers are forced to assume the worst-case fuel 
sulfur concentration at all times. The sulfur level in JP-8 is 
capped at 3,000 ppm (0.3 wt %) per the military fuel 
standard MIL-DTL-83133H [4]. Figure 1 shows the 
distribution of sulfur levels in fuel supplied by the Defense 
Logistics Agency in 2009 [5]. As shown, the peak in the 
distribution is at 1,000 ppm and the distribution is broad. 
The mean sulfur content varies somewhat from year to year; 
recently, the mean has been approximately 750 ppm, one 
fourth what must be assumed by current desulfurizers. 

Sulfur compounds in JP-8 take several forms, including 
mercaptans (i.e., thiols), sulfides, disulfides, thiophenes, and 
benzothiophenes. Of these sulfur compound classes, by far 
the most prevalent species are various benzothiophenes 

because they are the hardest to remove by conventional 
refinery desulfurization processes. Most benzothiophenes in 
jet fuel have two or three methyl groups attached to the rings 
as described by Lee and Ubanyionwu [6]. Mercaptans, in 
particular, are capped at 20 ppm by the military standard and 
are a minor contributor to total sulfur. Quantification of the 
total sulfur in jet fuel spectroscopically is challenging 
because the sulfur is present as an assortment of 
organosulfur compounds in a complex hydrocarbon matrix. 

Because desulfurizers are regenerated based on the 
assumed worst-case sulfur concentration and not the actual 
sulfur concentration, there is a potential for up to a four-fold 
average reduction in regeneration frequency by using an in-
line sulfur analyzer for desulfurizer control. Regeneration is 
frequently done at high temperatures, incurring significant 
parasitic losses. A polisher is often needed after the 
adsorbent bed to get the sulfur down to the very low levels 
required for high-temperature PEM fuel cells. The polisher 
might not be regenerable. Also, desulfurization hardware 
presents a packaging problem. Centeck [1] reported that 10–
20% of the current developmental JP-8 fuel cell APU space 
claim is consumed by the desulfurizer. The objective of this 
program is, therefore, to provide an intelligent means to 
detect the real-time fuel sulfur concentration, allowing less 
frequent desulfurizer regenerations or downsizing of the 
desulfurizer for the same regeneration frequency. 

The research reported in this document/presentation was performed in connection with contract/instrument W911QX-13-C-0005 with the U.S. 
Army Research Laboratory.  The views and conclusions contained in this document/presentation are those of the authors and should not be 
interpreted as presenting the official policies or position, either expressed or implied, of the U.S. Army Research Laboratory or the U.S. 
Government unless so designated by other authorized documents.  Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof.  The U.S. Government is authorized to reproduce and distribute reprints for Government purposes 
notwithstanding any copyright notation hereon. 
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Figure 1. Sulfur in JP-8 distribution from 2009 [5] 

FUEL PROPERTY ANALYZER DEVELOPMENT 
Fuel Samples 

The military procures JP-8 fuel from across the world for 
local and global use. Fuel that conforms to the military 
specifications must contain less than 3,000 ppm sulfur, but 
the average is much lower, 750 ppm, with a wide 
distribution. In addition, all the global regions sampled in 
2009 reported samples ranging from near 0 ppm to over 
1,500 ppm sulfur [5]. This sulfur variability, the degradation 
of fuel, and the retrieval and use of captured fuel with 
unknown sulfur content precludes a simple sulfur test at the 
place of origin to tune the desulfurizer.  

A representative set of about 400 JP-8 fuel samples that 
ranged over 0–2,900 ppm sulfur was collected. As many 
samples as possible were obtained to maximize the diversity 
in fuel composition. However, because of the nature of the 
fuel distribution, the majority of the set of JP-8 samples had 
less than 1,500 ppm sulfur. In addition to sulfur, 35 other 
fuel properties were available (e.g., cetane number, flash 
point) for on average 60% of the samples. All samples 
conformed to military specifications and ASTM standards. 
Additional samples were obtained by collecting Jet-A from 
local airports, doping jet fuel with methylbenzothiopehenes, 
and desulfurizing JP-8, which brought the total number of 
fuel samples to over 500. 

 
Raman Spectroscopy of Jet Fuels 

Raman spectroscopy probes rotational and vibrational 
modes in molecules. The sample is illuminated with a laser 
beam, and a detector is used to measure the intensity and 
wavelength of inelastically scattered light. Raman 
spectroscopy provides a good characterization of compounds 
with polarizable bonds (e.g., C–C, C–S). The main sulfur 
compounds in JP-8, thiophene and benzothiophene, can be 
identified with this technique because of their aromatic 
groups and strong carbon–sulfur bonds. 

Raman intensity spectra were collected by a portable 
Raman spectrometer (200–2780 Δcm-1, 2.7 Δcm-1 

resolution). A fuel sample was excited with a fiber-coupled 
785 nm diode laser (350 mW), and scattered light was 
collected with a fiber-coupled Raman probe (7.5 mm focal 
length). The probe was inserted into a sample holder that 
blocked all stray light and fixed the distance to the sample 
during measurement. A single, ten-second scan was taken of 
the sample, and the spectra was not smoothed or 
preprocessed at the time of measurement. An example of the 
relevant portion of a JP-8 fuel spectrum that has been 
baseline corrected is shown in Figure 2. Many distinct peaks 
vary between the samples and can be analyzed for chemical 
information.  

 

 
 

Figure 2. Baseline-corrected Raman spectra of JP-8 fuels 

Chemometric Analysis of Raman Spectra 
Chemometrics is the use of mathematical and statistical 

methods to provide maximum relevant chemical information 
by analyzing chemical data [7]. Although chemometrics of 
Raman and IR data have been used to predict sulfur in other 
hydrocarbons [8–10] and for various other fuel properties 
[11–15], it has not been used to predict jet fuel sulfur content 
with the desired accuracy and reproducibility for a predictive 
sensor [16, 17]. We have previously shown that near-IR 
absorption spectroscopy can be used for fuel sulfur 
quantification, although with less accuracy compared to the 
Raman spectroscopic method [18]. Using chemometric 
tools, large data sets are analyzed with statistical methods to 
determine linear combinations of independent variables 
(absorbance at various wavelengths) that best describe the 
response (sulfur). Regression methods such as principal 
component regression (PCR) and partial least squares (PLS) 
determine these “latent variables” (LVs). The LVs are by 
definition orthogonal and uncorrelated. Typical multivariate 
calibrations generated from PLS or PCR reduce the 
dimension of the problem from thousands of discrete 
absorbances in each spectrum to less than ten LVs. This 
multivariate approach has significant advantages over the 
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univariate methods used in traditional Beer’s law analyses. 
In particular, multivariate calibration reduces noise, handles 
interferences, and can help identify outliers. Other related 
chemometric methods allow recognition of patterns in the 
data (e.g., identification of sample contamination) and 
classification of samples (e.g., identification of an unknown 
fuel sample as diesel, JP-8, or some other fuel).  

Chemometric analysis was conducted using PLS_Toolbox 
(Eigenvector Research, Inc.) in MATLAB (Mathworks). The 
spectral data were preprocessed with generalized least 
squares and mean centering to eliminate baseline offsets and 
highlight differences in the spectra. The corresponding 
sulfur property data was preprocessed using autoscaling. An 
unsupervised learning method (PCA) was used to classify 
JP-8 samples. An inverse method (PLS) was used to create 
regression models of the fuel sulfur. A venetian-blinds cross-
validation test with seven splits was used to generate a root-
mean-square error of cross validation (RMSECV) that 
characterizes the error in the model. Looking at the 
RMSECV is akin to defining multiple calibration and 
prediction sub-sets in the samples, separately testing each 
one, and determining how well the model can predict the 
samples not included in the calibration set. Cross validation 
provides a more accurate characterization of chemometric 
model robustness than arbitrarily defining a single 
calibration set and test set and calculating the analogous 
root-mean-square error of prediction (RMSEP). The RMSEP 
was also calculated for the samples that were never used in 
the model to validate predictive model performance. These 
regression models were optimized using inverse partial least 
squares variable selection (50 wavelength window), which 
omits data at certain wavelengths to improve the model. The 
acceptable number of latent variables was analyzed using 
principal component regression, predictive power over time, 
and signal-to-noise tests. 

Interferent (peak width up to 20 wavelengths) and shift (up 
to 1 wavelength) analyses were conducted on the regression 
models to determine resistance to sample contamination and 
detector drift. Calibration drift analysis was conducted on 
spectra taken over a period of months by determining the 
change in the RMSEP. Permutation tests were conducted to 
help identify over-fit models or chance correlation. For this 
test, the sulfur data was randomly reassigned to the spectral 
data, and regressions were built using this mismatched data. 
Fifty permutations were used with this test.  

 
Regression Model Accuracy 
The main spectral regions used in the model were around 
500–1500 Δcm-1. This region includes aromatic C–C and C–
S functional groups that can be found in the sulfur molecules 
containing thiophene rings [19]. A regression model made 
from preprocessed spectra is shown in Figure 3. The spectra 
were split into a calibration set of 227 samples and a 
validation set of 164 samples. The model has 3 latent 
variables and a RMSECV of 160 ppm. The RMSEP for this 
calibration/prediction set split was 180 ppm. For reference, 

the ASTM reproducibility, R, for the laboratory fuel sulfur 
measurement (ASTM D4294) used to generate the 
“reference” sulfur data is 165 ppm at a nominal 1,000 ppm 
sulfur level. The model error is similar to R, with 58% of the 
sample predictions falling inside the ASTM reproducibility 
bounds. Many of those predictions not within the bounds are 
on the low range where the laboratory ASTM method clearly 
outperforms the sensitivity of the deployable Raman 
method. Over 90% of the predicted sulfur concentrations fall 
within ±250 ppm of the values measured via the ASTM 
method; those samples not predicted accurately can be 
identified as potential outliers based on the spectral data. A 
separate model can be made for the poorly determined 
samples. Using a tiered sampling approach, the sulfur of 
these samples can be determined albeit with more error, but 
still providing an advantage compared to assuming 
3,000 ppm sulfur. 
 

 
Figure 3. Parity plot of Raman PLS regression model 

The model was tested for signal-to-noise ratio, interferents, 
wavelength shifts, and significance. The choice of three 
latent variables was deemed appropriate based on these 
metrics. The regression model was most susceptible to 
interferents around 625 Δcm–1, 1,000 Δcm–1, and 
1,400 Δcm--1. Wavelength shifts did not impact the model in 
either direction by a significant amount. A permutation test 
was conducted with 50 permutations that showed the model 
was significant with at least a 99.5% level of confidence.  

PCA classification models were successfully made from 
these spectra that were able to distinguish fuel types (diesel 
and JP-8). Other fuel properties such as density, cetane 
number, and aromatic content were predicted successfully 
with PLS, as expected from previous studies [13]. By 
examination of the spectral data, outliers could be easily 
detected and selectively removed.  
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Real-time Desulfurization Tests 
Desulfurization experiments were conducted with a 

custom, fixed-volume adsorbent bed to evaluate the use of 
the analyzer downstream of the desulfurizer. Fuel was 
pumped into a bed filled with adsorbent, through a flow 
cell (connected to the portable spectrometer), and into a 
sample vial for off-line sulfur analysis. The fuel collected 
in the sample vial was diluted 3:1 with heptanes and 
analyzed off-line for sulfur via X-ray fluorescence (XRF) 
according to ASTM D4294. Six sulfur-in-kerosene 
standards spanning 0 to 3,000 ppm were used to calibrate 
the XRF instrument. The fuel was pumped through the bed 
until the effluent reached a sulfur concentration similar to 
the feed concentration, yielding a full saturation curve for 
the adsorbent. 

Chemometric techniques were used to analyze the 
desulfurization runs. Before each run, the flow cells were 
cleaned with isopropyl alcohol and purged with nitrogen. 
Spectra were gathered every 10 seconds during all 
desulfurization runs. Some spectra had to be excluded 
because of interference caused by air bubbles in the lines. 
Later a bubble trap was installed that eliminated the 
interference problem. During every desulfurization run, 10–
20 fuel samples were collected for off-line XRF analysis. 
Spectral data from the in-line spectrometer were assigned to 
each off-line sample for accuracy comparisons. The results 
from a desulfurization experiment from our previous work 
with near-IR absorption is shown in Figure 4 [18]. 

 

 
Figure 4. Chemometric sensor predicting breakthrough of 

sulfur in an adsorbent column in real time [18] 

Size, Weight, and Power Requirements 
The fuel sulfur analyzer consists of a portable 

spectrometer, flow cell chamber, fiber optics, laser source, 
microcontroller, and software. The packaging of the main 
components is shown in Figure 5. Fiber optics connect to an 
in-line flow cell (not shown) that is attached directly in the 
APU fuel line. The dimensions of the analyzer is currently 
19.7 cm × 8.4 cm × 13.3 cm (7.8 in. × 3.3 in. × 5.2 in.), 
taking up 1.95 L (119 in3) of space. Packaging 

improvements are being examined that could reduce the 
volume by 25%. The APU space claim for the M1A1 
Abrams is 213 L (13,000 in3) [20]. The desulfurizer 
consumes up to 20% of the space claim, or 42.6 L 
(2,596 in3). The analyzer takes up less than 1% of the APU 
space claim. 

 

 
Figure 5. Initial packaging of the fuel sulfur analyzer and its 

size relative to the M1A1 Abrams APU space claim 

DESULFURIZER CONTROL STRATEGIES 
Battlefield Day Simulations 

A Monte Carlo (MC) method was used to estimate actual 
desulfurization regeneration requirements based on a 
simulated battlefield day (BFD) using the sulfur fuel 
distribution from 2009 [5]. The battlefield day, defined by 
TACOM, consists of 3.4 hours of secondary road travel, 3.3 
hours of cross country road travel, and 11.3 hours of idle for 
a total 18 hours of use in a day as shown in Table 1 [2].  

 
Table 1. Time and Fuel Consumption for Tasks in the BFD 

Simulation 

Battlefield Day 
Task 

Task 
Time 
(hr) 

Fuel Consumption 
(gal/hr) 

Without 
Fuel Cell 

With 
Fuel Cell 

Low Idle/Silent 
Watch/Electric 

Power 
4.4 11.8 1.5 

High Idle 6.9 15.6 1.5 

Secondary Roads 3.4 78.0 78.0 

Cross Country 3.3 92.6 92.6 
 
A desulfurizer capacity was determined based on the APU 

space claim and the assumption that the desulfurization 
equipment accounts for 10–20% of the available space [1]. 
Regeneration losses of the adsorbent were modeled after 
data from TDA Research [21]. The fuel tank in the 
simulation was 500 gallons as per the M1A1 specification. 
To determine the simulated sulfur reading, the sulfur was 
first randomly sampled from the 2009 distribution. Then a 
random, Gaussian regression model error based on the 
RMSEP was assigned along with a random, Gaussian 
repeatability-based sensor error based on data taken during 
the real-time experiments. Finally, the sulfur prediction was 
time-averaged to reduce noise and an offset was applied as a 
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safety factor. An example of the output from the MC 
analysis is shown in Figure 6 for three battlefield days where 
the jumps in fuel tank sulfur constitute a tank refill from a 
new source. In the simulation, the actual sulfur in the tank 
was predicted by the regression model; the raw sulfur 
prediction is a noisy signal that was sometimes below the 
true sulfur value. However, the control signal that was used 
is both time-weighted to reduce noise, and contains a safety 
offset so that the desulfurizer never experiences 
breakthrough, preventing sulfur from ever reaching the fuel 
cell. 
 

 
Figure 6. Time-series of simulated M1A1 use and refueling 

over three 18-hour battlefield days 

Feed-forward/Feedback Controls 
Regeneration events could be timed based on feed-

forward, feedback, or combined feed-forward/feedback 
control as shown in the schematic in Figure 7. A selector 
valve is used to cycle between adsorbent beds allowing 
regeneration of the bed not in use. A flow meter is used to 
totalize the mass of sulfur challenged to the adsorbent bed. 
In the feed-forward arrangement, the sensor would be only a 
predictive instrument, calculating the total amount of sulfur 
in the fuel passed into the bed. This would allow for a 
regeneration gauge, like a fuel level gauge, that would tell 
when the bed needs to be regenerated based on the amount 
of sulfur challenging the bed. In the feedback set-up, the 
sensor would be on the effluent of the bed and tell when 
sulfur above an acceptable threshold was released. The 
feedback method is advantageous because this method 
allows measurement of adsorbent bed capacity in the field 
and therefore does not require large factors of safety to 
account for potential bed degradation over time. A downside 
is that the bed regeneration events could not be anticipated, 
requiring a back-up “catch” bed to avoid sulfur poisoning 
the downstream fuel cell. Using a combined feed-
forward/feedback controller maintains all of the control 
advantages of both strategies at the expense of a modest cost 

increase for a second flow cell, optical switch, and additional 
fiber-optic cables. 

The feed-forward/feedback controller could be based on 
tailored chemometric models to maximize the accuracy for 
nascent JP-8 at the inlet and desulfurized JP-8 at the outlet. 
The feed-forward model would be a full-range model for 
fuels from 0 to 3,000 ppm sulfur, whereas the feedback 
model would focus on desulfurized fuels with very low 
sulfur. The accuracy of the low-sulfur model would be 
higher at low concentrations, allowing for a less 
conservative safety factor.  
 

 
Figure 7. Control schematic for feed-forward and feedback 

desulfurizer control 

Reduction in Regeneration Frequency 
The benefit of applying the control schemes was evaluated 

with the battlefield day simulations. The improvements 
based on the average fuel sulfur content were also calculated 
to determine the expected overall increase in regeneration 
efficiency. Figure 8 shows where the current technology lies 
with the current model accuracy.  

The plot shows how the reduction in regeneration 
frequency scales with sensor error for the feed-forward (red 
line) and feedback (blue line) control strategies. From 
strictly a regeneration standpoint, the feedback and hybrid 
feed-forward/feedback strategies offer the same benefit. 
The symbols indicate the benefit based on the accuracy of 
the current prototype analyzer (square and diamond) and 
what is reasonably attainable with future enhancements to 
the analyzer (circle). Raman feed-forward control can 
reduce regeneration events or bed size by 65%, but requires 
adsorbent deactivation to be well understood. The best 
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solution uses the feedback (or combined feed-
forward/feedback) control system that can reduce 
regeneration events by over 70%. As discussed, the 
feedback strategy requires the additional catch bed and 
cannot judge the remaining capacity of the bed, but this 
strategy can measure adsorbent deactivation in the field. 
The combined feed-forward/feedback approach achieves 
the regeneration reduction of the feedback controller with 
the predictive power of the feed-forward controller, but 
requires a catch bed and additional optical components. 
The combined feed-forward/feedback approach also offers 
the option to periodically probe the bed capacity while 
otherwise operating in a feed-forward scheme to preserve 
the catch bed. 

 

 
Figure 8. Reduction in the frequency of regeneration events for 

different control strategies 

SUMMARY 
With the high and variable sulfur content of JP-8 jet fuel, 

intelligent management of desulfurizers is critical to the 
adoption of next-generation fuel cell APUs. An in-line 
chemometric fuel sulfur sensor has the potential to reduce 
costs, improve combat effectiveness, and reduce overall fuel 
consumption. The fuel sulfur analyzer needs to be compact, 
low-power, and robust—a chemometric, Raman-based 
analyzer appears to satisfy these mission requirements. 
Regeneration events could be timed based on feed-forward, 
feedback, or a hybrid control strategy. The analyzer can 
either be used to downsize the desulfurizer or reduce the 
regeneration frequency by 65–70% compared to current 
systems based on the accuracy of our prototype analyzer. 
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